首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17214篇
  免费   1166篇
  国内免费   621篇
电工技术   530篇
技术理论   2篇
综合类   1103篇
化学工业   2517篇
金属工艺   1541篇
机械仪表   3745篇
建筑科学   502篇
矿业工程   338篇
能源动力   327篇
轻工业   961篇
水利工程   66篇
石油天然气   1415篇
武器工业   179篇
无线电   616篇
一般工业技术   2626篇
冶金工业   526篇
原子能技术   30篇
自动化技术   1977篇
  2024年   38篇
  2023年   396篇
  2022年   488篇
  2021年   733篇
  2020年   639篇
  2019年   545篇
  2018年   450篇
  2017年   553篇
  2016年   513篇
  2015年   445篇
  2014年   706篇
  2013年   1323篇
  2012年   877篇
  2011年   811篇
  2010年   606篇
  2009年   710篇
  2008年   666篇
  2007年   1000篇
  2006年   1053篇
  2005年   1039篇
  2004年   916篇
  2003年   778篇
  2002年   737篇
  2001年   635篇
  2000年   521篇
  1999年   417篇
  1998年   315篇
  1997年   225篇
  1996年   229篇
  1995年   173篇
  1994年   107篇
  1993年   104篇
  1992年   64篇
  1991年   45篇
  1990年   29篇
  1989年   26篇
  1988年   12篇
  1987年   14篇
  1986年   19篇
  1985年   6篇
  1984年   10篇
  1983年   5篇
  1982年   3篇
  1981年   2篇
  1980年   3篇
  1979年   4篇
  1977年   2篇
  1957年   1篇
  1955年   1篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
11.
One of the main challenges in the laser powder bed fusion (LPBF) process is making dense and defect-free components. These porosity defects are dependent upon the melt pool geometry and the processing conditions. Power-velocity (PV) processing maps can aid in visualizing the effects of LPBF processing variables and mapping different defect regimes such as lack-of-fusion, under-melting, balling, and keyholing. This work presents an assessment of existing analytical equations and models that provide an estimate of the melt pool geometry as a function of material properties. The melt pool equations are then combined with defect criteria to provide a quick approximation of the PV processing maps for a variety of materials. Finally, the predictions of these processing maps are compared with experimental data from the literature. The predictive processing maps can be computed quickly and can be coupled with dimensionless numbers and high-throughput (HT) experiments for validation. The present work provides a boundary framework for designing the optimal processing parameters for new metals and alloys based on existing analytical solutions.  相似文献   
12.
《Ceramics International》2022,48(22):33361-33372
Calcium phosphate cements (CPCs) have been increasingly used as synthetic bone substitutes for repair and regeneration of bone defects given their biocompatibility, resemblance to bone and malleability. Moreover, their use as local antibiotic delivery systems is of main interest against bone infections, avoiding the adverse effects of high dosages of conventional therapy. The main goals of this work were to improve the properties of a commercial CPC (Neocement®), turning it injectable, and to provide it with a new functionality as a drug delivery system able to ensure a sustained release of an antibiotic commonly used in orthopaedics (gentamicin sulphate, GS). For this, the influence of the liquid phase amount (%LP) and type of polymer contained in the formulation (chitosan, Chi, or hydroxypropyl methylcellulose, HPMC) on the basic properties of the material was evaluated. It was found that the formulation containing 42%LP + HPMC+1.87% wt GS was the best one. It showed suitable setting and mechanical properties, and injectability around 87% (much superior to the original Neocement®, with 31%). It ensured a sustained release of GS for at least 14 days, at antibacterial levels. The antibiotic released is highly effective against S. epidermidis, but also presents some antibacterial activity against S. aureus. The CPC revealed to be non-cytotoxic. Moreover, it demonstrated good flowability and connectivity with human cadaveric trabecular bone.  相似文献   
13.
《Ceramics International》2022,48(11):14993-15005
Additive manufacturing processes make it possible to produce increasingly complex 3D parts. In addition, these numerical processes can be usefully used to manufacture ceramic/metal parts of high dimensional resolution with thermal, electrical and electronic properties of interest for applications in the field of power electronics.In this context, a hybrid additive machine was developed to manufacture ceramic/metal parts. This machine consists in the combination of two additive manufacturing processes: stereolithography and robocasting.Using this hybrid process, the feasibility of HTCC components has been demonstrated by building dielectric alumina by stereolithography and molybdenum conductive network by robocasting. Molybdenum-based metallic formulation adapted to the process and allowing to obtain a high conductive metallic network has been developed. The co-debinding and co-sintering cycles have been optimized to minimize the content of residual carbon and to prevent the oxidation of molybdenum. The alumina/molybdenum interface has also been observed to conclude about a possible delamination between these two materials with different thermal expansion coefficients (CTE). Sintered HTCC parts have been characterized in the domain of hyperfrequency. The frequency responses deviate from the simulation due to a lack of dimensional accuracy of the metallic network.  相似文献   
14.
Direct writing is a unique means to align anisotropic particles for the fabrication of textured ceramics by templated grain growth (TGG). We show that alignment of tabular barium titanate (BT) template particles (20–40 μm width and 0.5–2 μm thickness) in a PIN-PMN-PT matrix powder (d50 = 280 nm) is significantly improved during direct writing using anisotropic nozzles at high printing rates. The particle orientation distribution in as-printed filaments, and the texture orientation distribution in sintered ceramic filaments are shown to directly correlate with COMSOL Multiphysics-predicted torque distributions for direct writing with aspect ratio 2, 3 and 5 oval nozzles. Electromechanical strain properties of the textured piezoelectric ceramics significantly improved relative to random ceramics when printed with anisotropic nozzles. Simulations of aspect ratio 20 nozzles and nozzles with interior baffles demonstrate significantly increased torque and near elimination of constant shear stress cores (i.e. plug flow).  相似文献   
15.
Water electrolysis is a process that can produce hydrogen in a clean way when renewable energy sources are used. This allows managing large renewable surpluses and transferring this energy to other sectors, such as industry or transport. Among the electrolytic technologies to produce hydrogen, proton exchange membrane (PEM) electrolysis is a promising alternative. One of the main components of PEM electrolysis cells are the bipolar plates, which are machined with a series of flow distribution channels, largely responsible for their performance and durability. In this work, AISI 316L stainless steel bipolar plates have been built by additive manufacturing (AM), using laser powder bed fusion (PBF-L) technology. These bipolar plates were subjected to ex-situ corrosion tests and assembled in an electrolysis cell to evaluate the polarization curve. Furthermore, the obtained results were compared with bipolar plates manufactured by conventional machining processes (MEC). The obtained experimental results are very similar for both manufacturing methods. This demonstrates the viability of the PBF-L technology to produce metal bipolar plates for PEM electrolyzers and opens the possibilities to design new and more complex flow distribution channels and to test these designs in initial phases before scaling them to larger surfaces.  相似文献   
16.
《Ceramics International》2022,48(16):23051-23060
To obtain both plasticity and toughness of the material at the same time, various manufacturing techniques of ceramic-metal composites and structures have been studied. In this work, a bio-inspired Al2O3 ceramic scaffold with Gyroid structure was designed and prepared by stereolithographic (SL) additive manufacturing, then the Al2O3/Al ceramic-metal hybrid structure was prepared by infiltrating molten Al into the Al2O3 ceramic structure. The performances of the Al2O3 ceramic scaffold and the Al2O3/Al ceramic-metal hybrid structure were compared and analyzed by a quasi-static compression experiment. The quasi-static compressive strength of the pristine Al2O3 scaffold was 14.36 MPa, while that of the Al2O3/Al ceramic-metal hybrid structure was up to 89.06 MPa. Moreover, the plasticity of the Al2O3/Al ceramic-metal hybrid structure was much higher than that of the Al2O3 scaffold. During compression, the Al2O3/Al ceramic-metal hybrid structure had excellent energy absorption, reaching up to 2569.16 KJ/m³, 15 times that of the Al2O3 scaffold. Therefore, this method can obtain materials with excellent ductility and toughness.  相似文献   
17.
18.
Tissue engineering has been developed with the aim of improving the regeneration and recovery of impaired tissues and organs. Biodegraded scaffolds serve the aforementioned functions and can also be decomposed by means of metabolism. They have no biological toxicity and save patients from injuries by the second surgery, which makes biodegradable scaffolds a new development trend in the tissue engineering. In this study, the textile engineering and chemical crosslinking techniques are employed to produce biodegradable polyvinyl alcohol (PVA) hollow braids, serving as the tissue engineering scaffolds. The process involves two types of products, including the twisted yarns and hollow braids. The twist number of PVA twisted yarns is changed to form different PVA twisted yarns, which are then used to braided into hollow braids via the braiding technology. Therefore, the hollow braids are basically composed three types of PVA twisted yarns. Next, the surface observation, mechanical properties, and degradation of the products are then evaluated. The test results indicate that PVA twisted yarns exhibit the optimal mechanical properties when being twisted with 3 turns/inch. Any higher twist counts result in over twist in the twisted yarns. The optimal hollow braids are composed of PVA twisted yarns with a twist counts being 3 turns/inch. Afterwards, hollow braids are crosslinking with genipin, thereby obtaining greater mechanical strength of 23.6 N and higher decomposition rate of 0.8. The specified hollow braids are suitable for the use as tissue engineering scaffolds.  相似文献   
19.
The production of ceramic matrix composites (CMC) based on C/C-SiC is still very cost-intensive and therefore only economical for a few applications. The fabrication of the preforms involves many costs that need to be reduced. In this work, the shaping of the CFRP-preforms is realized by thermoset injection molding, which enables large-scale production. The polymeric matrix used is a multi-component matrix consisting of novolak resin, curing agent and lubricant. Six millimeter chopped carbon fiber with a proportion of 50 wt.% were used as a reinforcement. These ingredients are processed by an industrial equipment for compounding and injection molding in order to manufacture a CFRP demonstrator representing a brake disc. Test specimens are cut out of the demonstrator in different directions in order to investigate influences of flow direction and weld lines on microstructural and mechanical properties. Afterward, the CFRP samples were converted to C/C-SiC composites by the liquid silicon infiltration process. The article addresses the flow behavior of the compound during the injection molding and the building of the weld lines in the demonstrator. In addition, results of the directional dependence of the microstructural and mechanical properties within the fabricated disc in the different production steps are presented.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号